DIGITAL LOGIC DESIGN Course Code: 328356(28)

Mr. Manjeet Singh Sonwani Assistant Professor Department of Electronics & Telecomm. Government Engineering College Raipur

UNIT-III COMBINATIONAL CIRCUITS

- Introduction : Adder & Subtractor: Half adder, Full adder, Half subtractor, Full subtractor;
- Binary Parallel Adder; The Look Ahead Carry Adder; Serial Adder; BCD Adder;
- Code Converters; Parity Bit Generators/ Checkers; Comparators;
- Decoders: 3-Line to 8-Line Decoder, 8-4-2-1 BCD to Decimal Decoder, BCD to Seven Segment Decoder; Encoders: Octal to Binary and Decimal to BCD Encoder; Multiplexers: 2-Input Multiplexer, 4-Input Multiplexer, 16-Input Multiplexer;
- Demultiplexers: 1-Line to 4-Line & 1-Line to 8- Line Demux
- Applications of Multiplexers.

Combinational Logic

- Logic circuits for digital systems may be combinational or sequential.
- A combinational circuit consists of input variables, logic gates, and output variables.

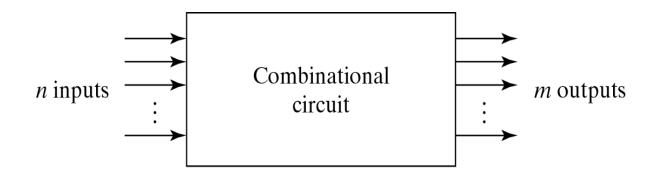


Fig. 4-1 Block Diagram of Combinational Circuit

4-2. Analysis procedure

- To obtain the output Boolean functions from a logic diagram, proceed as follows:
- 1. Label all gate outputs that are a function of input variables with arbitrary symbols. Determine the Boolean functions for each gate output.
- 2. Label the gates that are a function of input variables and previously labeled gates with other arbitrary symbols. Find the Boolean functions for these gates.

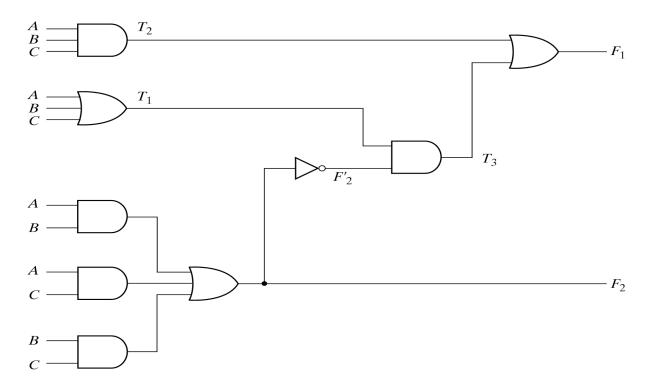
Analysis procedure

- 3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained.
- 4. By repeated substitution of previously defined functions, obtain the output Boolean functions in terms of input variables.

Example

 $F_2 = AB + AC + BC; T_1 = A + B + C; T_2 = ABC; T_3 = F_2'T_1;$ $F_1 = T_3 + T_2$ $F_2 = T_1 + T_2 - F_1'T_1 + ABC - A'BC'_1 + A'B'C_2 + ABC'_2 + ABC$

 $F_1 = T_3 + T_2 = F_2'T_1 + ABC = A'BC' + A'B'C + AB'C' + ABC$



Derive truth table from logic diagram

We can derive the truth table in Table 4-1 by using the circuit of Fig.4-2.

Table 4-1

A	В	С	F ₂	F ₂	T ₁	Tz	T ₃	F1
0	0	0	0	1	0	0	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0	1	hal part	1	0	1	0	0	0
1	0	0	0	1 1	1	0	1	1
1	0	and must	be all y	0	1	0	0	0
1	lie1mn	0	d as 1 d	0	on1 ch	0	0	0
1	ici i nis	or pe tru	htal	0	net pn	100	0	1

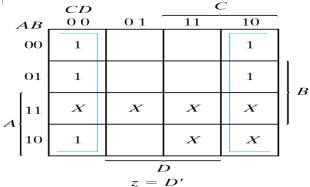
Design procedure

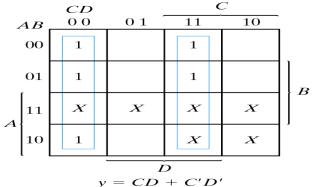
1. Table4-2 is a Code-Conversion example, first, we can list the relation of the BCD and Excess-3 codes in the truth table.

	Input	BCD		Out	put Exe	cess-3 (Code
A	B	с	D	w	x	y	z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	0.10	0	0	1.4.5	0	1
0	0	1	1	0	1	1 10	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

Karnaugh map

 For each symbol of the Excess-3 code, we use 1's to draw the map for simplifying Boolean function.





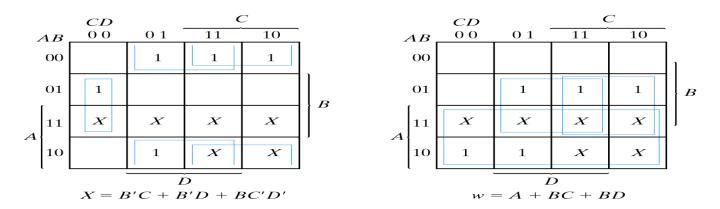


Fig. 4-3 Maps for BCD to Excess-3 Code Converter

Circuit implementation

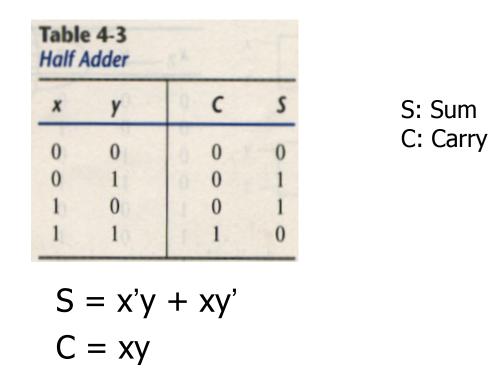
z = D'; y = CD + C'D' = CD + (C + D)'x = B'C + B'D + BC'D' = B'(C + D) + B(C + D)'w = A + BC + BD = A + B(C + D)



Fig. 4-4 Logic Diagram for BCD to Excess-3 Code Converter

Binary Adder-Subtractor

- A combinational circuit that performs the addition of two bits is called a half adder.
- The truth table for the half adder is listed below:



Implementation of Half-Adder

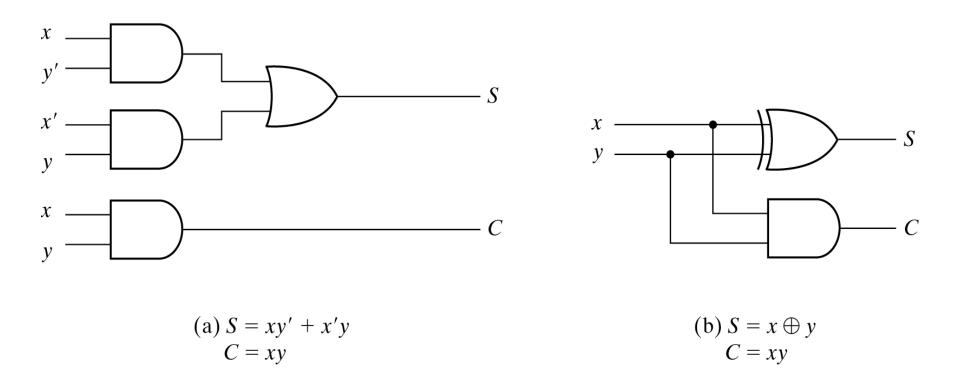


Fig. 4-5 Implementation of Half-Adder

 One that performs the addition of three bits(two significant bits and a previous carry) is a full adder.

	Fable 4-4 Full Adder							
x	y	z	с	5				
0	0	0	0	0				
0	0	1	0	1				
0	1	0	0	1				
0	1	1	1	0				
1	0	0	0	1				
-1	0	1	1	0				
1	1	0	1	0				
1	1	1	1	1				

Simplified Expressions

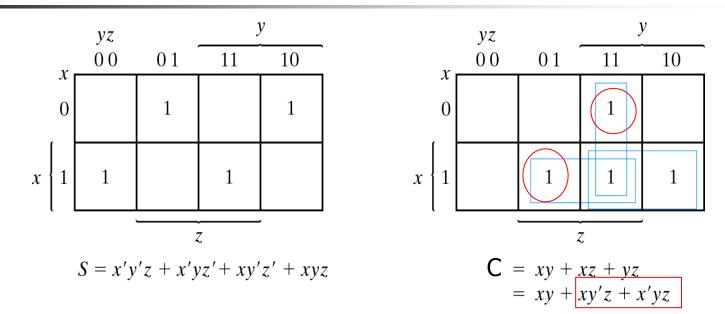


Fig. 4-6 Maps for Full Adder

S = x'y'z + x'yz' + xy'z' + xyzC = xy + xz + yz

Full adder implemented in SOP

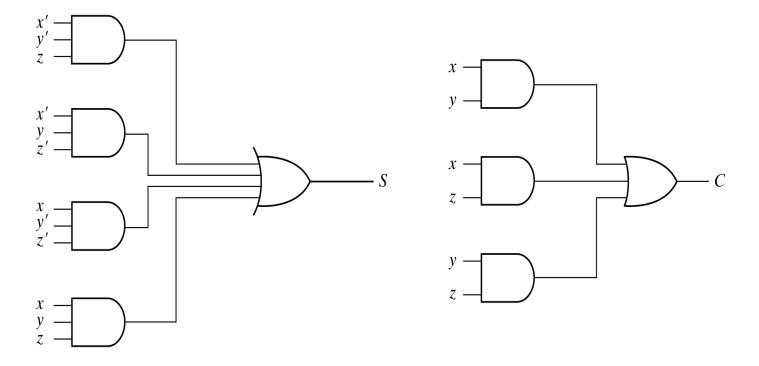


Fig. 4-7 Implementation of Full Adder in Sum of Products

Another implementation

Full-adder can also implemented with two half adders and one OR gate (Carry Look-Ahead adder).

$$S = z \oplus (x \oplus y) = z'(xy' + x'y) + z(xy' + x'y)' = xy'z' + x'yz' + xyz + x'y'z C = z(xy' + x'y) + xy = xy'z + x'yz + xy$$

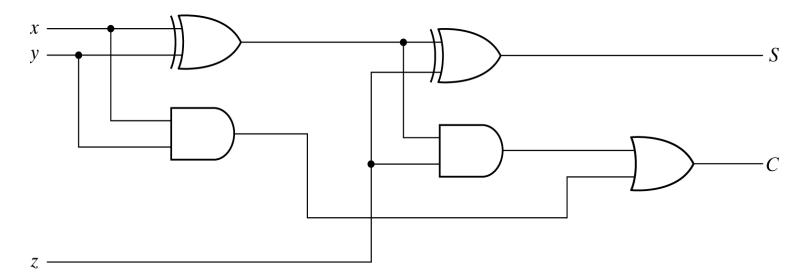
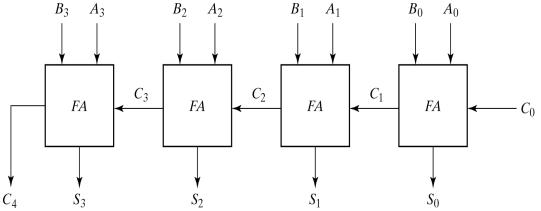


Fig. 4-8 Implementation of Full Adder with Two Half Adders and an OR Gate

Binary adder

 This is also called Ripple Carry Adder ,because of the construction with full adders are connected in cascade.

Subscript i:	3	2	1	0	e e en al
Input carry	0	1	1	0	C_i
Augend	1	0	1	1	Ai
Addend	0	0	1	1	B _i
Sum	1	1	1	0	Si
Output carry	0	0	1	1	C_{i+1}



Carry Propagation

- Fig.4-9 causes a unstable factor on carry bit, and produces a longest propagation delay.
- The signal from C_i to the output carry C_{i+1}, propagates through an AND and OR gates, so, for an n-bit RCA, there are 2n gate levels for the carry to propagate from input to output.

Carry Propagation

- Because the propagation delay will affect the output signals on different time, so the signals are given enough time to get the precise and stable outputs.
- The most widely used technique employs the principle of carry look-ahead to improve the speed of the algorithm.

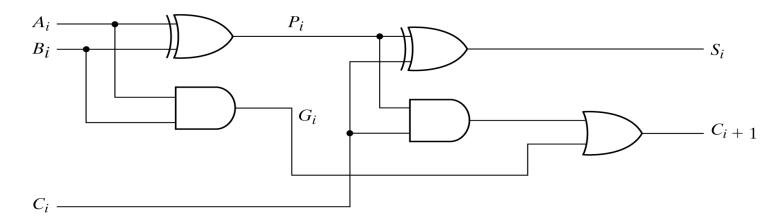


Fig. 4-10 Full Adder with P and G Shown

Boolean functions

 $P_i = A_i \oplus B_i$ steady state value $G_i = A_i B_i$ steady state value

Output sum and carry

$$S_i = P_i \oplus C_i$$
$$C_{i+1} = G_i + P_i C_i$$

G_i : carry generate P_i : carry propagate

$$C_{0} = \text{input carry}$$

$$C_{1} = G_{0} + P_{0}C_{0}$$

$$C_{2} = G_{1} + P_{1}C_{1} = G_{1} + P_{1}G_{0} + P_{1}P_{0}C_{0}$$

$$C_{3} = G_{2} + P_{2}C_{2} = G_{2} + P_{2}G_{1} + P_{2}P_{1}G_{0} + P_{2}P_{1}P_{0}C_{0}$$

C₃ does not have to wait for C₂ and C₁ to propagate.

Logic diagram of carry look-ahead generator

C₃ is propagated at the same time as C₂ and C₁.

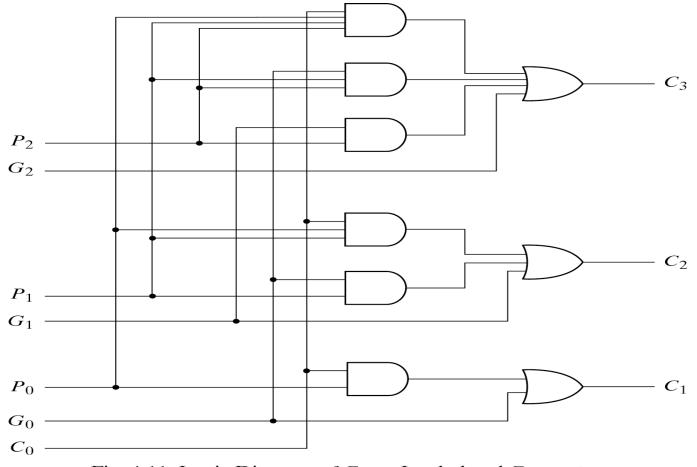


Fig. 4-11 Logic Diagram of Carry Lookahead Generator

4-bit adder with carry lookahead

Delay time of n-bit CLAA = XOR + (AND + OR) + XOR

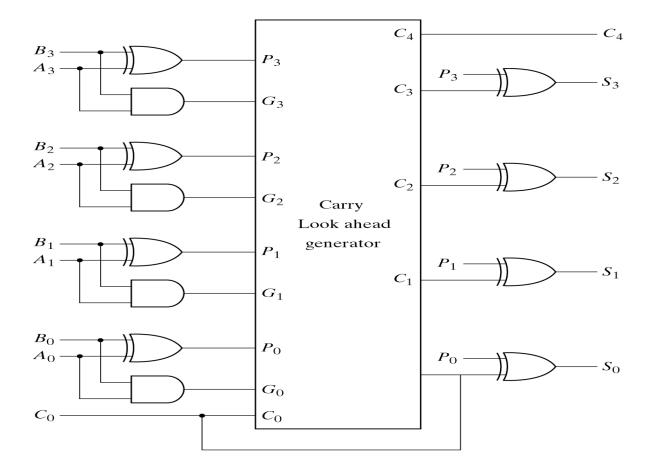


Fig. 4-12 4-Bit Adder with Carry Lookahead

Binary subtractor

$M = 1 \rightarrow subtractor$; $M = 0 \rightarrow adder$

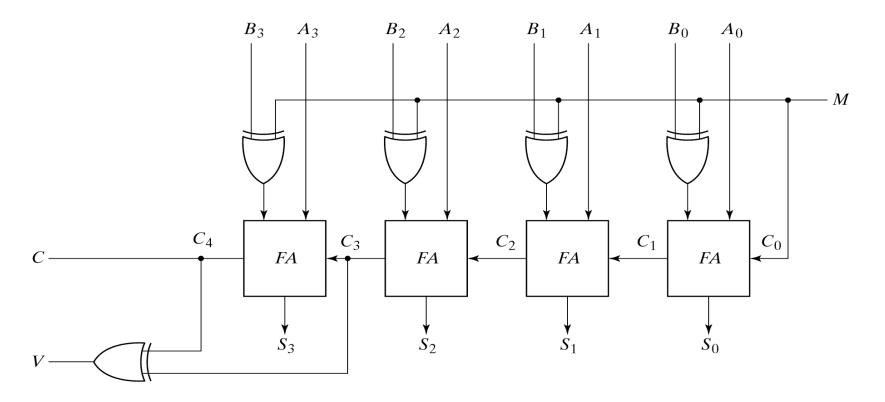


Fig. 4-13 4-Bit Adder Subtractor

- It is worth noting Fig.4-13 that binary numbers in the signed -complement system are added and subtracted by the same basic addition and subtraction rules as unsigned numbers.
- Overflow is a problem in digital computers because the number of bits that hold the number is finite and a result that contains n+1 bits cannot be accommodated.

Overflow on signed and unsigned

- When two unsigned numbers are added, an overflow is detected from the end carry out of the MSB position.
- When two signed numbers are added, the sign bit is treated as part of the number and the end carry does not indicate an overflow.
- An overflow cann't occur after an addition if one number is positive and the other is negative.
- An overflow may occur if the two numbers added are both positive or both negative.

4-5 Decimal adder

BCD adder can't exceed 9 on each input digit. K is the carry.

Binary Sum						BCD Sum				
к	Z ₈	Z4	Z ₂	Z ₁	С	S ₈	S 4	Sz	S1	
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	. 0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1 100	0	0	4
0	0	1	0	1	0	0	1 **	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9
0	1	0	1	0	1 0	0	0	0	0	10
0	1	0	1	1	1	0	0	- 0	1	11
0	1	1	0	0	1	0	0	1	0	12
0	1	1 obb	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	54 1 2	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	-1	19

Rules of BCD adder

- When the binary sum is greater than 1001, we obtain a nonvalid BCD representation.
- The addition of binary 6(0110) to the binary sum converts it to the correct BCD representation and also produces an output carry as required.
- To distinguish them from binary 1000 and 1001, which also have a 1 in position Z₈, we specify further that either Z₄ or Z₂ must have a 1.

$$C = K + Z_8 Z_4 + Z_8 Z_2$$

Implementation of BCD adder

- A decimal parallel adder that adds n decimal digits needs n BCD adder stages.
- The output carry from one stage must
 be connected to the input carry of the next higher-order stage.

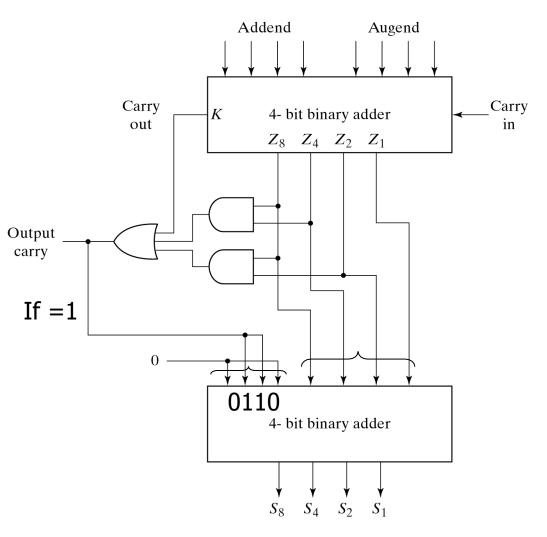


Fig. 4-14 Block Diagram of a BCD Adder

4-6. Binary multiplier

 Usually there are more bits in the partial products and it is necessary to use full adders to produce the sum of the partial products.

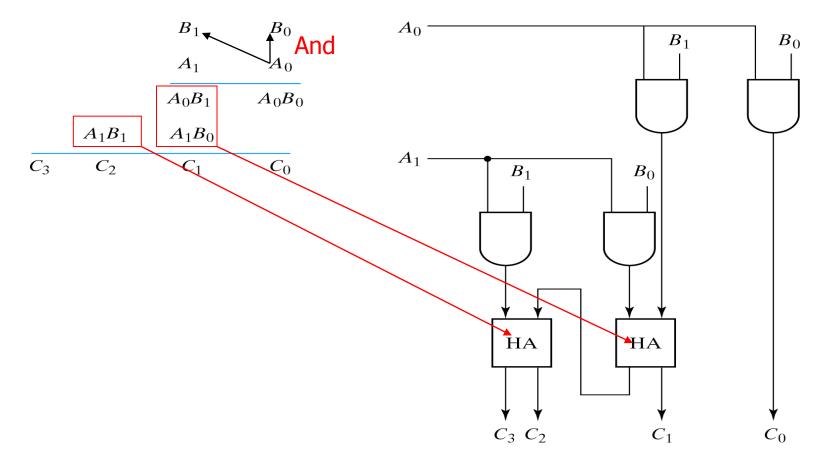


Fig. 4-15 2-Bit by 2-Bit Binary Multiplier

4-bit by 3-bit binary multiplier

- For J multiplier bits and K multiplicand bits we need (J X K) AND gates and (J – 1)
 K-bit adders to produce a product of J+K bits.
- K=4 and J=3, we need 12
 AND gates and two 4-bit adders.

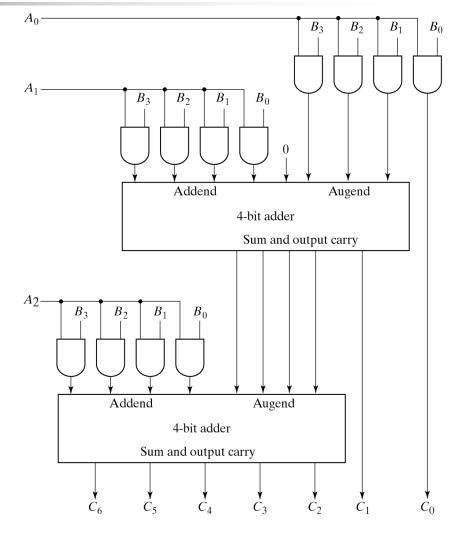


Fig. 4-16 4-Bit by 3-Bit Binary Multiplier

4-7. Magnitude comparator

 The equality relation of each pair of bits can be expressed logically with an exclusive-NOR function as:

$$A = A_3 A_2 A_1 A_0$$
; $B = B_3 B_2 B_1 B_0$

$$x_i = A_i B_i + A_i' B_i'$$
 for $i = 0, 1, 2, 3$

$$(\mathsf{A} = \mathsf{B}) = \mathsf{x}_3 \mathsf{x}_2 \mathsf{x}_1 \mathsf{x}_0$$

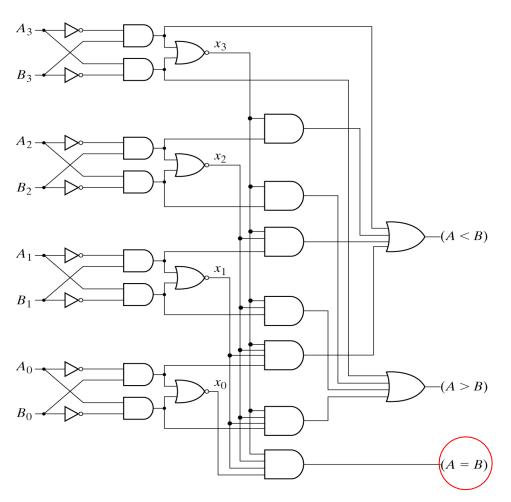


Fig. 4-17 4-Bit Magnitude Comparator

Magnitude comparator

- We inspect the relative magnitudes of pairs of MSB. If equal, we compare the next lower significant pair of digits until a pair of unequal digits is reached.
- If the corresponding digit of A is 1 and that of B is 0, we conclude that A>B.

 $(A>B) = A_{3}B'_{3} + x_{3}A_{2}B'_{2} + x_{3}x_{2}A_{1}B'_{1} + x_{3}x_{2}x_{1}A_{0}B'_{0}$ (A<B) = A'_{3}B_{3} + x_{3}A'_{2}B_{2} + x_{3}x_{2}A'_{1}B_{1} + x_{3}x_{2}x_{1}A'_{0}B_{0}

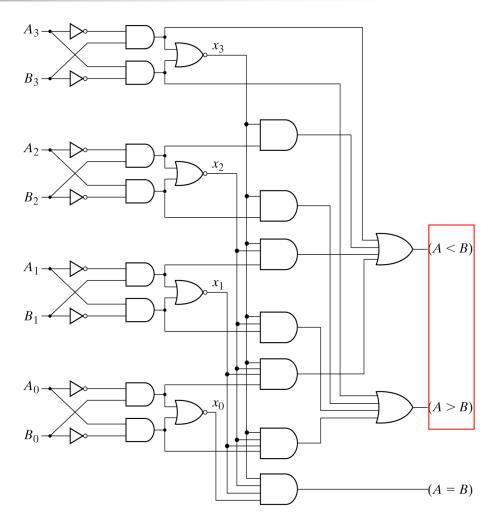


Fig. 4-17 4-Bit Magnitude Comparator

4-8. Decoders

- The decoder is called n-to-m-line decoder, where $m \le 2^n$.
- the decoder is also used in conjunction with other code converters such as a BCD-to-seven_segment decoder.
- 3-to-8 line decoder: For each possible input combination, there are seven outputs that are equal to 0 and only one that is equal to 1.

Implementation and truth table

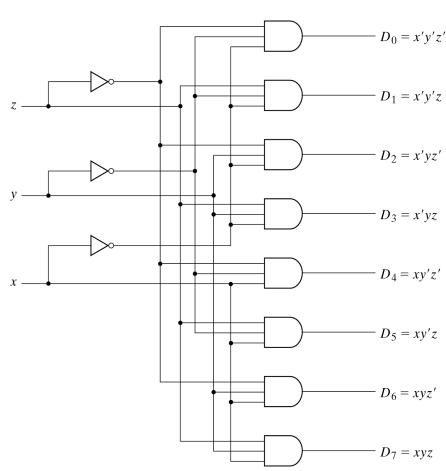
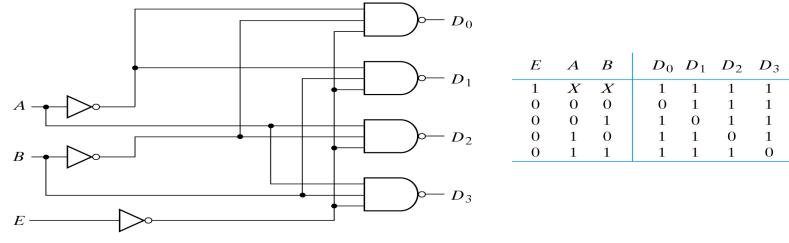


Fig. 4-18 3-to-8-Line Decoder

Inputs			1. P							
X	Y	1	Do	D1	D2	D3	D4	Ds	Dé	D,
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Decoder with enable input

- Some decoders are constructed with NAND gates, it becomes more economical to generate the decoder minterms in their complemented form.
- As indicated by the truth table , only one output can be equal to 0 at any given time, all other outputs are equal to 1.



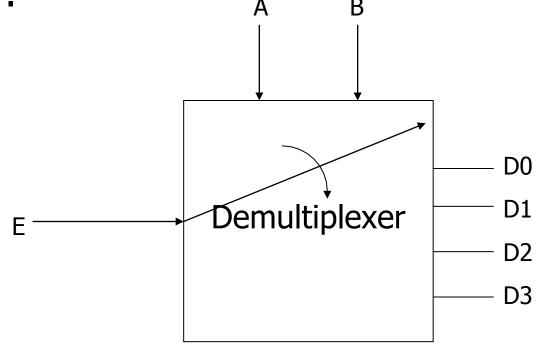
(a) Logic diagram

(b) Truth table

Fig. 4-19 2-to-4-Line Decoder with Enable Input

Demultiplexer

- A decoder with an enable input is referred to as a decoder/demultiplexer.
- The truth table of demultiplexer is the same with decoder.
 A B



3-to-8 decoder with enable implement the 4-to-16 decoder

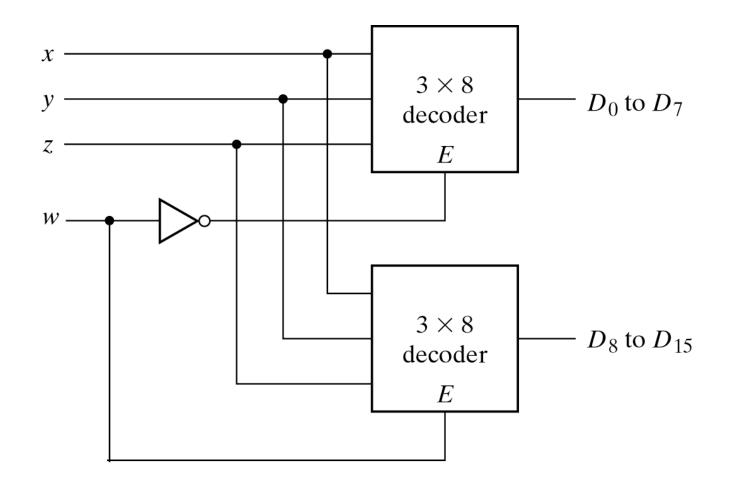


Fig. 4-20 4×16 Decoder Constructed with Two 3 \times 8 Decoders

Implementation of a Full Adder with a Decoder

From table 4-4, we obtain the functions for the combinational circuit in sum of minterms:

 $S(x, y, z) = \Sigma(1, 2, 4, 7)$ $C(x, y, z) = \Sigma(3, 5, 6, 7)$

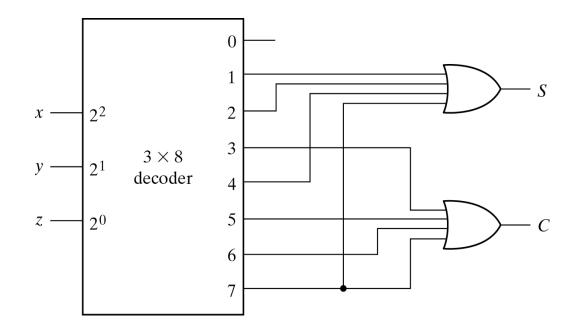


Fig. 4-21 Implementation of a Full Adder with a Decoder

4-9. Encoders

- An encoder is the inverse operation of a decoder.
- We can derive the Boolean functions by table 4-7

$$z = D_1 + D_3 + D_5 + D_7$$

$$y = D_2 + D_3 + D_6 + D_7$$

$$x = D_4 + D_5 + D_6 + D_7$$

Inputs and and and a part of the output									puts	ta lak
D_0	D_1	D_2	D_3	D_4	D_5	D_6	D7	x	у	z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	OR 1	0	1
0	0	0	0	0	0	1	0	1 CODED 1	req in	0
0	0	0	0	0	0	0	coloperat	on consid	er 1 c c	1

Priority encoder

- If two inputs are active simultaneously, the output produces an undefined combination. We can establish an input priority to ensure that only one input is encoded.
- Another ambiguity in the octal-to-binary encoder is that an output with all 0's is generated when all the inputs are 0; the output is the same as when D₀ is equal to 1.
- The discrepancy tables on Table 4-7 and Table 4-8 can resolve aforesaid condition by providing one more output to indicate that at least one input is equal to 1.

Priority encoder

V=0→no valid inputs V=1→valid inputs

X's in output columns represent don't-care conditions X's in the input columns are useful for representing a truth table in condensed form. Instead of listing all 16 minterms of four variables.

	Inp	uts		Output	s	
Do	D1	D2	D ₃	x	y	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
X	X	X	1.100	1	1	1

4-input priority encoder

- Implementation of table 4-8
- $\begin{aligned} x &= D_2 + D_3 \\ y &= D_3 + D_1 D_2' \\ V &= D_0 + D_1 + D_2 + D_3 \end{aligned}$

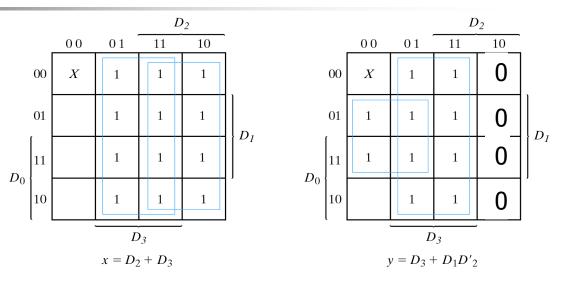
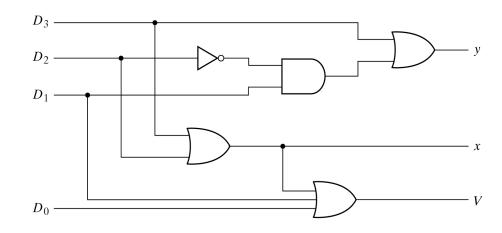
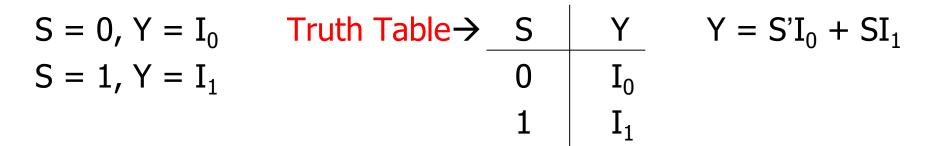
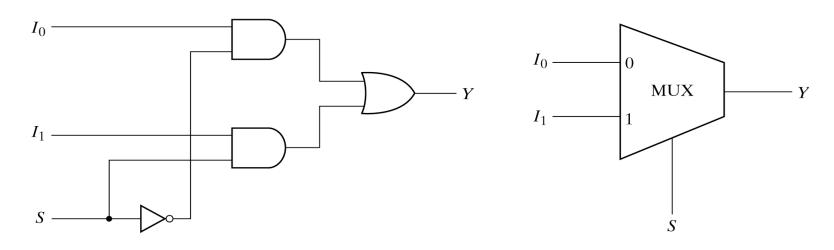


Fig. 4-22 Maps for a Priority Encoder



4-10. Multiplexers



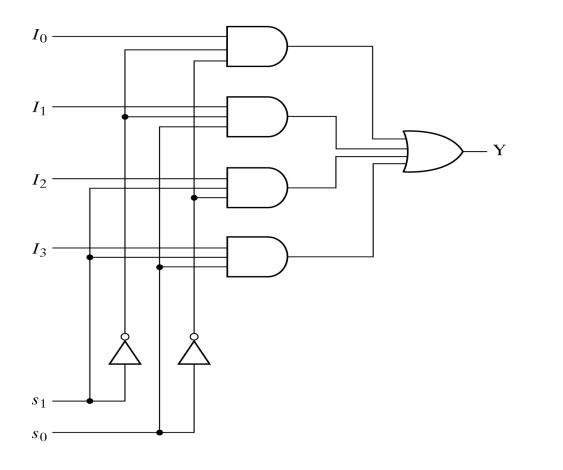


(a) Logic diagram

(b) Block diagram

Fig. 4-24 2-to-1-Line Multiplexer

4-to-1 Line Multiplexer



s_1	s_0	Y
0	0	I_0
0	1	I_1
1	0	I_2
1	1	I_3

(b) Function table

(a) Logic diagram

Quadruple 2-to-1 Line Multiplexer

 Multiplexer circuits can be combined with common selection inputs to provide multiple-bit selection logic. Compare with Fig4-24.

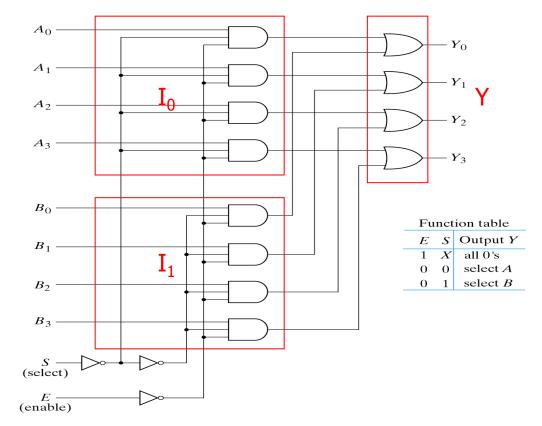


Fig. 4-26 Quadruple 2-to-1-Line Multiplexer

Boolean function implementation

 A more efficient method for implementing a Boolean function of n variables with a multiplexer that has n-1 selection inputs.

$$F(x, y, z) = \Sigma(1, 2, 6, 7)$$

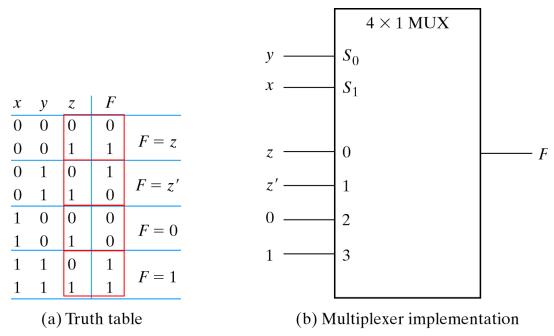


Fig. 4-27 Implementing a Boolean Function with a Multiplexer

4-input function with a multiplexer

 $F(A, B, C, D) = \Sigma(1, 3, 4, 11, 12, 13, 14, 15)$

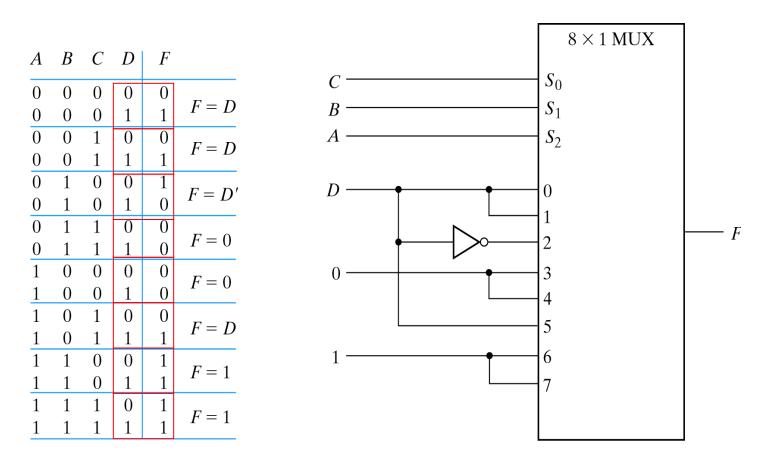


Fig. 4-28 Implementing a 4-Input Function with a Multiplexer