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UNIT-III COMBINATIONAL CIRCUITS

Introduction : Adder & Subtractor: Half adder, Full adder,
Half subtractor, Full subtractor;

- Binary Parallel Adder; The Look Ahead Carry Adder; Serial
Adder; BCD Adder;

- Code Converters; Parity Bit Generators/ Checkers;

Comparators;

Decoders: 3-Line to 8-Line Decoder, 8-4-2-1 BCD to Decimal
Decoder, BCD to Seven Segment Decoder; Encoders: Octal
to Binary and Decimal to BCD Encoder; Multiplexers: 2-
Input Multiplexer,4-Input Multiplexer, 16-Input Multiplexer;

Demultiplexers: 1-Line to 4-Line & 1-Line to 8- Line Demux
- Applications of Multiplexers.



Combinational Logic

o for digital systems may be
combinational or sequential.

= A combinational circuit consists of input variables,
logic gates, and output variables.
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Fig. 4-1 Block Diagram of Combinational Circuit



i 4-2. Analysis procedure

To obtain the output Boolean functions from a
logic diagram, proceed as follows:

1. Label all gate outputs that are a function of input
variables with arbitrary symbols. Determine the Boolean
functions for each gate output.

2. Label the gates that are a function of input variables and
previously labeled gates with other arbitrary symbols. Find
the Boolean functions for these gates.



i Analysis procedure

3. Repeat the process outlined in step 2 until the outputs of
the circuit are obtained.

4. By repeated substitution of previously defined functions,
obtain the output Boolean functions in terms of input
variables.



i Example

F,=AB+AC+BC;, T,=A+B+C; T,=ABC;, T:=F"Ty;
Fi=T:+T,
F,=T3+ T,=F,T;+ ABC = ABC' + AB'C + AB'C’ + ABC

="

C —_J “Dil:l

Fig. 4-2 Logic Diagram for Analysis Example



Derive truth table from logic
i diagram

= We can derive the truth table in Table 4-1 by using
the circuit of Fig.4-2.

Table 4-1

Truth Table for the Logic Diagram of Fig. 4-2
A B C Fa F, T, T, Ts F,
0 0 0 0 | 0 0 0 0
0 0 1 0 1 1 0 ] 1
0 | 0 0 ] 1 0 1 |
0 | 1 | 0 1 0 0 0
1 0 0 0 1 1 0 1 |
I 0 ] | 0 I 0 0 0
| | 0 | 0 1 0 0 0
I | 1 | 0 1 | 0 |




i Design procedure

1. Table4-2 is a Code-Conversion example, first,
we can list the relation of the BCD and Excess-3
codes in the truth table.

Table 4-2
Truth Tabie for Code-Conwversion Example

Input BCD Output Excess 3 Code
A B C D " x ¥ z
0 0 0 0 0 0 1 1
0 0 0 | 0 | 0 0
0 O 1 0 0 1 O 1
O 0 1 i 0 i l 0
0 i O O 0 1 i 1
0 1 O I 1 0 0 O
0 1 1 0 1 0 0 1
0 1 1 | | 0 1 0
1 0 L 0 1 0 1 |
1 0 0 1 1 1 0 0




i Karnaugh map

2. For each symbol of the Excess-3 code, we use
1’s to draw the map for simplifying Boolean
function.
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Fig. 4-3 Maps for BCD to Excess- 3 Code Converter




i Circuit implementation

=D’; y=CD+ CD =CD + (C + D)
x=BC+BD+BCD =B(C+ D) + B(C + DY
w=A+BC+BD=A+B(C+ D)

D'
Z

CD Y N v

0v

Y @Uv
Y

C +D

Fig. 4-4 Logic Diagram for BCD to Excess-3 Code Converter
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i Binary Adder-Subtractor

= A combinational circuit that performs the addition of two bits
is called a half adder.

= The truth table for the half adder is listed below:

Table 4-3
Half Adder

X y C 5 S: Sum
0 0 0 0 C: Carry
0 1 0 1

| 0 0 |

I | | 0

S =Xy + Xy
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i Implementation of Half-Adder

B S
B S— ;
= TS

(a)S=xy +x'y b)S=xDy
C=uxy C=xy

- = e = e =

Fig. 4-5 Implementation of Half-Adder
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i Full-Adder

= One that performs the addition of three bits(two

significant bits and a previous carry) is a full adder.

Table 4-4
Full Adder

X

<

O
O
0O
O
1
1
1
1

--QQ0==00

“QO=Q=0=0 IN

-==0=000|fH

=00 =0==0 |
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i Simplified Expressions

yz yz Y
00 01 11 10 00 01 11 10
X X
L
0 1 1 0 1
N
x11 1 1 x11 @ 1 1
z Z
S=x'y'z+x'yz'+xy'z +xyz C=uxy+xz+yz

= xy +lxy'z + x'yz

Fig. 4-6 Maps for Full Adder

S =XYz+ XYyZ + Xy'Z + Xyz
C=Xy + Xz + Yz
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Fig. 4-7 Implementation of Full Adder in Sum of Products

i Full adder implemented in SOP
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i Another implementation

= Full-adder can also implemented with two half
adders and one OR gate (Carry Look-Ahead adder).
S=z9o(xoy)
= Z(xy’ + Xy) + z(xy’ + Xy)
=XyZ + XYyZ' + Xyz + Xy'z
C=1z(xy’ + Xy) + Xy = Xy'z + Xyz + Xy

Fig. 4-8 Implementation of Full Adder with Two Half Adders and an OR Gate 16
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i Binary adder

= This is also called
Ripple Carry Adder
,because of the

construction with full

adders are
connected in
cascade.

-

5

§1

Fig. 4-9 4-Bit Adder

Subscript it a XD

Input carry - Sl Bl Tl C,
Augend IE T BARS LA A,
Addend A0S B,
Sum s, Sl Sl | Si
Output carry o Jui  Bad e Cie

By Az B, A B A By A

Y O S O I

FA < FA I S (R DR
| | | |
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i Carry Propagation

= Fig.4-9 causes a unstable factor on carry bit, and produces a
longest propagation delay.

= The signal from C, to the output carry C,;, propagates
through an AND and OR gates, so, for an n-bit RCA, there
are 2n gate levels for the carry to propagate from input to

output.

18



i Carry Propagation

= Because the propagation delay will affect the output signals
on different time, so the signals are given enough time to
get the precise and stable outputs.

= The most widely used technique employs the principle of
carry look-ahead to improve the speed of the algorithm.

A;
B

P;

Fig. 4-10 Full Adder with P and G Shown 19



i Boolean functions

P,=A @ B, steady state value
G, = AB, steady state value
Output sum and carry
SS=P, & C
Ci1 =G + PG
G, : carry generate P, : carry propagate
C, = input carry
C; = Gy + PG
C, =Gy + P,C;, =Gy + P,G, + P,PC,
C =G, + P,C, =G, + P,G; + P,P,G, + P,P,P,C,

= C; does not have to wait for C, and C, to propagate.

20



carry look-ahead generator

= C; is propagated at the same time as C, and C;.

i Logic diagram of

C3

o

. LN LHUHJ

1

w
o]

— >
T
>

0
o

Fig. 4-11 Logic Diagram of Carry Lookahead Generator 271



i 4-bit adder with carry lookahead

= Delay time of n-bit CLAA = XOR + (AND + OR) + XOR

C4 C4

>
£
A3 7
C3
e

L?T

>
) G2 Carry

Look ahead

> W

N
9
0
o
0
H
2
0
H

> W
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o
R

Fig. 4-12 4-Bit Addder with Carry Lookahead



i Binary subtractor

M = 1->subtractor ; M = 0—>adder

Aj B, A, B, A By A
M
Y A Y
C> Cq Co
FA FA FA FA -«
S3 AY) S1 So

Fig. 4-13 4-Bit Adder Subtractor
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i Overflow

s [tis noting Fig.4-13 that binary numbers in the signed
-complement system are added and subtracted by the same
basic addition and subtraction rules as unsigned numbers.

= Overflow is a problem in digital computers because the
number of bits that hold the number is finite and a result
that contains n+1 bits cannot be accommodated.
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i Overflow on signhed and unsigned

= When two unsigned numbers are added, an overflow is
detected from the end carry out of the MSB position.

= When two signed numbers are added, the sign bit is treated
as part of the number and the end carry does not indicate
an overflow.

= An overflow cann’t occur after an addition if one number is
positive and the other is negative.

= An overflow may occur if the two numbers added are both
positive or both negative.
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Decimal

S2 Sq

BCD Sum
Sa

Z2 £y

Binary Sum
Z4

BCD adder can’t exceed 9 on each input digit. K is the carry.

Derivation of BCD Adder

Table 4-5

i 4-5 Decimal adder

STV O~

O=0=~0=0=0=

CO=mOO==wQ0QO

CCO00mm==00

CCO00000 0O =m™

OCO00O0CO00O0OO0

OCFOHDHOSD =

CO==00==00

OO0 =mmmmDO

CO0COOCO0O=m™

=jl=j=l=l=jl=]=ll=]=

10

11

12
13
14
15
16
17
18
19

O=0=mO0O=O=0Om

OO mQOO=wmQO

CC00mmmm=DO

CO00C000 =

Lo I

=R o N=R N=R_ R=R_R=E_

COmm==mQOQO

QOO0 00O ™ ™ rm—i =™




i Rules of BCD adder

= When the binary sum is greater than 1001, we obtain a
representation.

= The addition of binary 6(0110) to the binary sum converts it
to the correct BCD representation and also produces an
output carry as required.

= To distinguish them from binary 1000 and 1001, which also
have a 1 in position Zg, we specify further that either Z, or
Z>, must have a 1.

C — K + Z8Z4 + ZSZZ
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i Implementation of BCD adder

= A decimal parallel
adder that adds n
decimal digits needs
n BCD adder stages.

= The
must
be connected to the
input carry of the
next higher-order
stage.

Output

LT T

Carry K 4- bit binary adder _(_Cffarry
out in

If =1

@

Zs Zy Zr 7

0 A

“YYYY Y Y Y ¥

0110

4- bit binary adder

NN

S S48, S

Fig. 4-14 Block Diagram of a BCD Adder



i 4-6. Binary multiplier

= Usually there are more bits in the partial products and it is necessary to
use full adders to produce the sum of the partial products.

B, Bo .
'\T And !
Ay A

Ag

AoB
A1Bq A1Bg
A
C; Cs Co . B4 Bg
\N\ Y
HA AH A
C; Co C

Fig. 4-15 2-Bit by 2-Bit Binary Multiplier

ks
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i 4-bit by 3-bit blnary multiplier

= For J multiplier bits and K LT

multiplicand bits we need (J  « P e g
X K) AND gates and (J — 1) WW
' !

K-bit adders to produce a o Ao

product of J+K bits. e ot
= K=4and ]J=3, we need 12 PP

AND gates and two 4-bit PEEEN

adders. WJ %w w L

] ] ]

Fig. 4-16 4-Bit by 3-Bit Binary Multiplier 5u



i 4-7. Magnitude comparator

s The equality relation of each N
pair of bits can be expressed K’ij}_
logically with an exclusive-NOR 5

function as: L

A = A,AAA, ; B = BsB,B,B, m ’
x=AB+A'B/ fori=0,1,2,3 E}v

(A = B) = X3X:X1Xq o

HJU

o o

S S
&

I

JU UUU

Fig. 4-17 4-Bit Magnitude Comparator
31



i Magnitude comparator
= We inspect the relative A %}D}L

HJU

= If the corresponding digit of A is
1 and that of B is 0, we conclude &
that A>B.

(A>B)=

magnitudes of pairs of MSB. If B,

equal, we compare the next

0 A>B)

:

'

JU up )

lower significant pair of digits 4
until a pair of unequal digits is BZK

reached.
Fig. 4-17 4-Bit Magnitude Comparator

(A<B)=

(A=B)
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i 4-8. Decoders

= The decoder is called n-to-m-line decoder, where
m<2".

= the decoder is also used in conjunction with other
code converters such as a BCD-to-seven_segment
decoder.

= 3-t0-8 line decoder: For each possible input
combination, there are seven outputs that are equal
to 0 and only one that is equal to 1.

33



i Implementation and truth table

Table 46
w2 [uth Toble of 3to-:Line Decoder

Dy =

L — TR — N — T — T — R — TR —

L — L — L — L — L — L — o L —

L= —— L —— L o R ——

L — L — L — N — T A — L — N —

[ — T — T — C I — TR — N — R —

0 e S S S S e

e — . — T — R — R — U R —

e — N e— D e— DN —

D AT — — S — —

= S D R ee— e———

Fig. 4-18 3-to-8-Line Decoder



i Decoder with enable input

s Some decoders are constructed with NAND gates, it
becomes more economical to generate the decoder
minterms in their complemented form.

= As indicated by the truth table , only one output can be

equal to 0 at any given time, all other outputs are equal to
1.

Do

S
S

D

A g >0
B—»—[>o—l
[>o

cooor~| Iy
== OO X
- o= 0O X W

_ e O =
N N
o
O R =
O ==
98]

D>

YU

Dj

E

(a) Logic diagram (b) Truth table

Fig. 4-19 2-to-4-Line Decoder with Enable Input
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i Demultiplexer

= A decoder with an enable input is referred to as a
decoder/demultiplexer.

= The truth table of demultiplexer is the same with
decoder. A 3

-

£ +Demultiplexer D1
D2

—— D3

—— DO




3-to-8 decoder with enable
i implement the 4-to-16 decoder

X
R 3 X8 L hotoD
Y decoder 0to Ly
Z . E
WH_DC
3 X8
decoder Dgto D5
E

Fig. 4-20 4 X 16 Decoder Constructed with Two 3 X 8 Decoders 37



Implementation of a Full Adder
with a Decoder

From table 4-4, we obtain the functions for the combinational circuit in
sum of minterms:

S(x,y,2) = 2(1, 2,4, 7)
Cx,y,2) = 2(3, 5,6, 7)

O_

1

S
x — 22 2
y—l,n  3x8 3
decoder 4

z—20 5 C
6
7

Fig. 4-21 Implementation of a Full Adder with a Decoder
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i 4-9. Encoders

= An encoder is the inverse operation of a decoder.

= We can derive the Boolean functions by table 4-7
Z=D;+ D3+ D5+ D,
y = D, + D3+ Dg + D,
X = D4+ D5+ Dg + D,

Table 4-7

Truth Table of Octal-to-Binary Encoder
Inputs Outputs
Dy D, D, Dy D, D Dy D x y Z
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 E
0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 1 ﬁ
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 E
0 0 0 0 0 0 1 0 1 1 0
0 0 0O 0 0 0 0 1 1 1 E




i Priority encoder

= If two are active simultaneously, the produces
an undefined combination. We can establish an input priority
to ensure that only one input is encoded.

o in the octal-to-binary encoder is that an
output with all 0’s is generated when all the inputs are 0;

the output is the same as when D, is equal to 1.

= The discrepancy tables on Table 4-7 and Table 4-8 can
resolve aforesaid condition by providing one more output to
indicate that at least one input is equal to 1.
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i Priority encoder

V=0->no valid inputs

V=1->valid inputs Table 4-8
Truth Table of a Priority Encoder

X’s in output columns represent Inputs Outputs

don’t-care conditions Dy D, D Dy § i o aaiho®
X’s in the input columns are D AR0LONN 1513 610 AR
useful for representing a truth A s g i
table in condensed form. i i }1{ ll] : IIJ :

Instead of listing all 16

minterms of four variables.
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= Implementation of
table 4-8

X=D2+D3
y=D3+D1D,2
V=D0+D1+D2+D3

i 4-input priority encoder

D,
00 01 11 10 00 01 11 10
ol x | 1 1 1 ol x | 1 1 0
01 1 1 1 o1 1 1 1 0
1 1 1 1 ul 1 1 1 0
Dy
10 1 1 1 10 1 1 0
D3 Dj
x =Dy + Dj3 y=D3+D]D’2
Fig. 4-22 Maps for a Priority Encoder
Ds
D2 DO L Y
Dy
0 L/

Fig. 4-23 4-Input Priority Encoder
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i 4-10. Multiplexers

S=0,Y=1I, Truth Table> S Y Y =51, + S[4

S=1,Y=1, 0 | I,
1| 1
! } 1y 0
: B

S—"—|>O_ S

(a) Logic diagram (b) Block diagram
Fig. 4-24 2-to-1-Line Multiplexer
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i 4-to-1 Line Multiplexer

Iy

1

S0

Ly

A

(a) Logic diagram

Fig. 4-25 4-to-1-Line Multiplexer

51 S0 Y
0 o I
0o 1| It
1 0| Ip
1 1 I3

(b) Function table
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i Quadruple 2-to-1 Line Multiplexer

= Multiplexer circuits can be combined with common selection inputs to
provide multiple-bit selection logic. Compare with Fig4-24.

Ao [ )
—t D— Yo
Aq R
I — D— Y Y
Az 8 [ )
’—l—/ D— Y2
A3 )
e D— Y5
B )
—1 Function table
Output Y
51 l } f ;WS( allO's
I]. —— 0 0| sclectAa
B> R 0O 1| select B
—1
B3 )
—1
(seISect) i>0 {>c
(enaEble) {>o

Fig. 4-26 Quadruple 2-to-1-Line Multiplexer

45



i Boolean function implementation

= A more efficient method for implementing a Boolean
function of n variables with a multiplexer that has n-1
selection inputs.

F(x, v, 2) = 2(1,2,6,7)

—SO

W NN = O

X y z F
0 0100
0o o0l1|1]F=z
0 1 |01
011 olf™%
1 010/ o0
1ol ol 70
1 1101
11 1) B
(a) Truth table

4 X 1 MUX

(b) Multiplexer implementation

Fig. 4-27 Implementing a Boolean Function with a Multiplexer
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4-input function with a
multiplexer

F(A, B, C, D) = 2(1, 3, 4, 11, 12, 13, 14, 15)

8 x 1 MUX

A B CD|F
0 0 0[0] 0] ¢ S0
o0 o|1| 1| F=D B 51
0 0 1]0] 0 ._ A S
0o 0 1|1 1| F=P
0 1 00 1

- D * ¢ 0
01 01| 0 F=P ;
0 1 1[0]0] B
0 1 11| 0 F=V ! {>° 2
1 0 0]0] 0 . 0 3
1 0 o|1] o F70 ! A
1 0 1]0] 0
Lo 1|1 1] F=P >
1 1 0|0/ 1 1 6
11 ool1] 1] £ I 7
1 1 1]0] 1
11 1)1 1] F71

Fig. 4-28 Implementing a 4-Input Function with a Multiplexer
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